

Faculty of Physics, University of Vienna & Institute for Quantum Optics and Quantum Information, Vienna

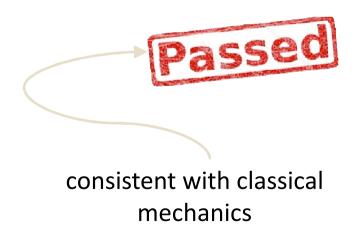
Quantum clocks, mirrors and Alice and Bob in Gravity

Časlav Brukner

Olomouc, May 10th, 2012

Motivation

Quantum Mechanics


- entanglement
- single particle interference
- Bohr's complementarity principle
- Born's rule

Newtonian gravity sufficient (if any gravity effects seen at all!)

General Relativity

- Einstein's equations
- gravity as space-time geometry
- gravitational time dilation
- black holes

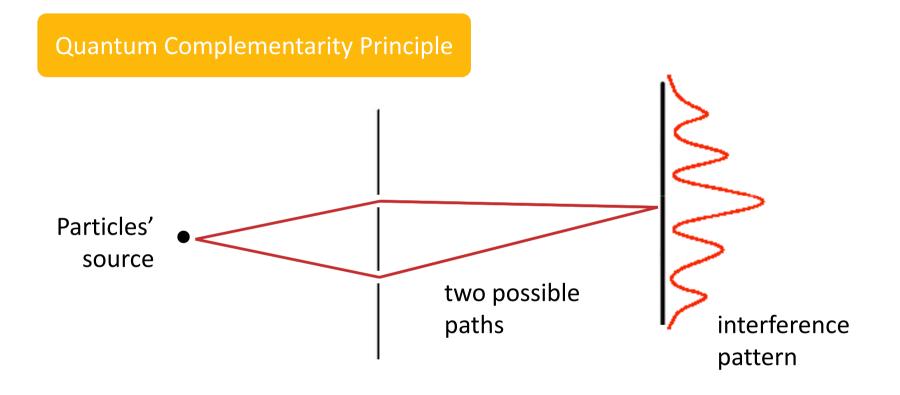
Motivation

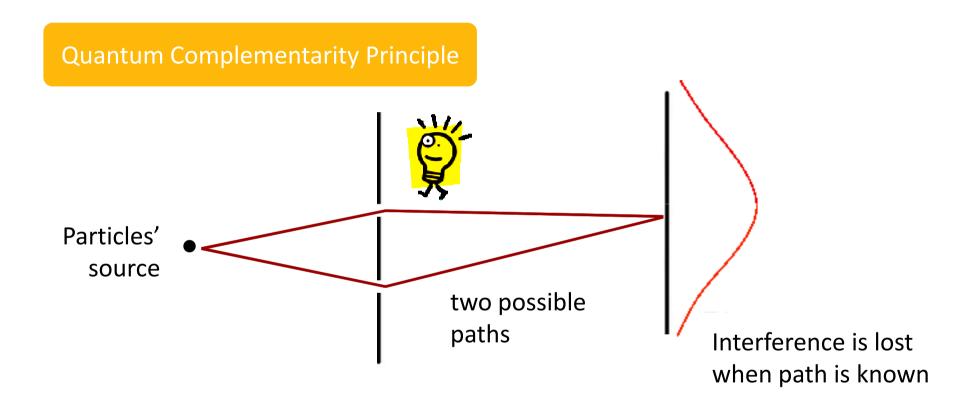
Quantum Mechanics

General Relativity

- 1. Effects that require both theories to be explained?
- 2. Effects that require an unified framework ("quantum gravity")?

Outline


- Introduction & motivation
- [1] Gravitational readshift and quantum complementarity


- [2] Quantum correlations with no-causal order
- [3] Probing Planck-scale physics with quantum optics
- Conclusion

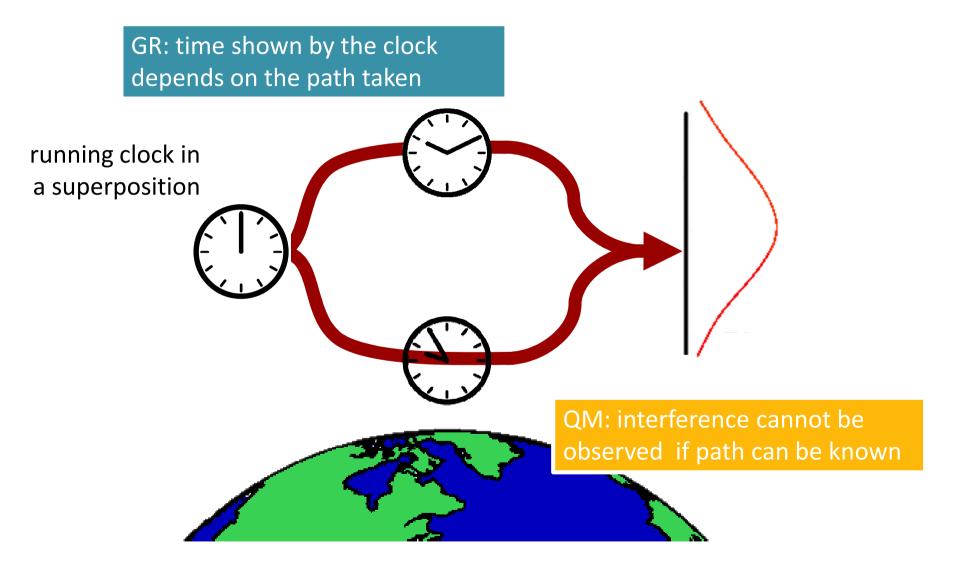
[1] Gravitational redshift and quantum complementarity

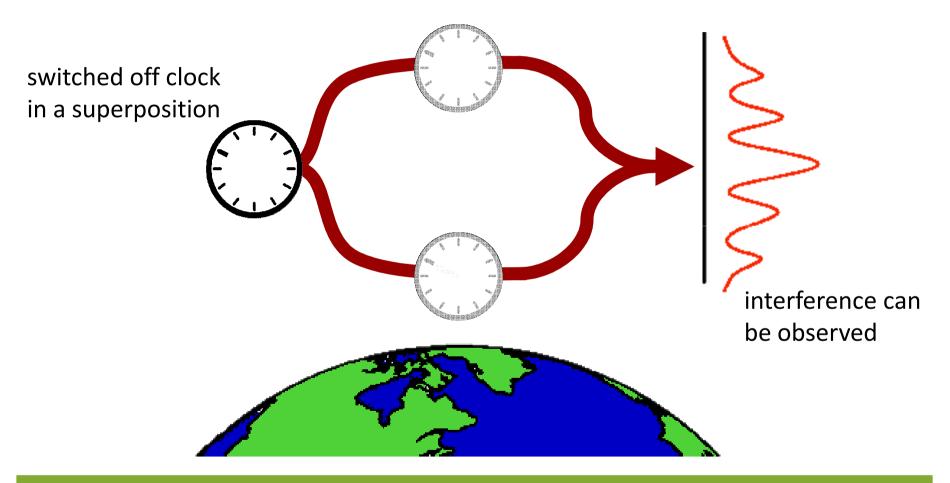
M. Zych, F. Costa, I. Pikovski, Č. Brukner: **Nature Communication** 2:505 doi: 10.1038/ncomms1498 (2011)

It is **not possible** to simultaneously know the path of the particle and observe its interference.

Gravitational time dilation

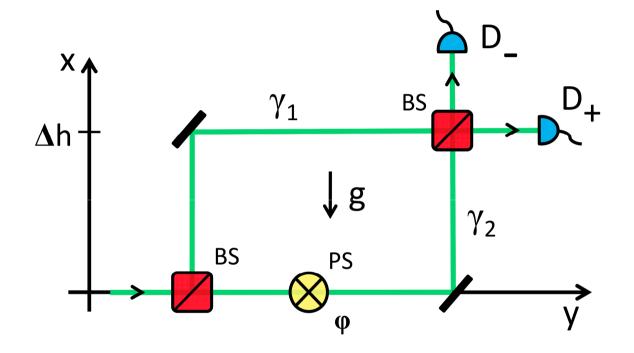
Two initially synchronized clocks placed at different gravitational potentials.



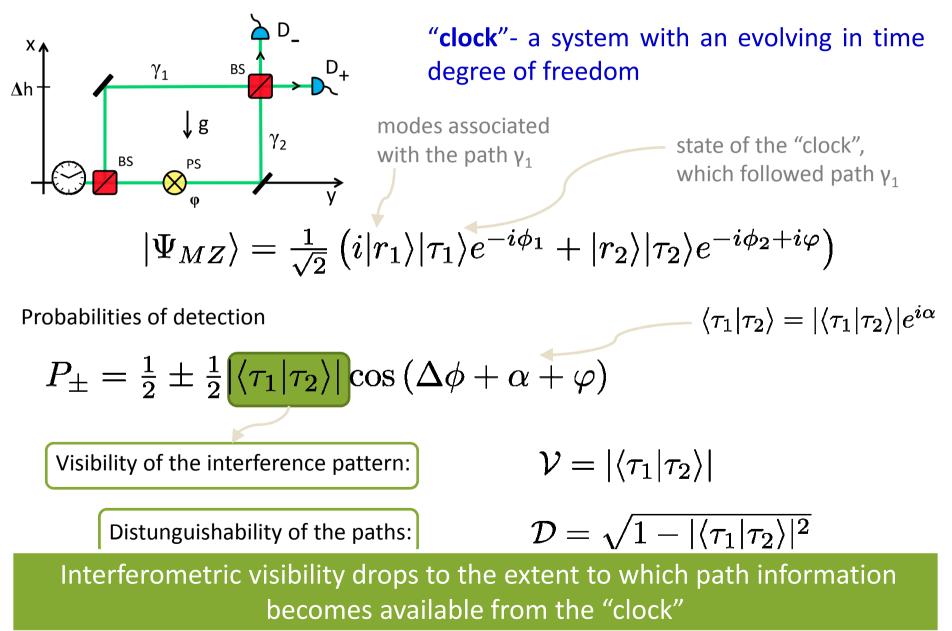

Clock closer to a massive body ticks slower than the clock further away from the mass.

Initially synchronized clocks will eventually show **different times** when placed at different gravitational potentials.

Interference of clocks



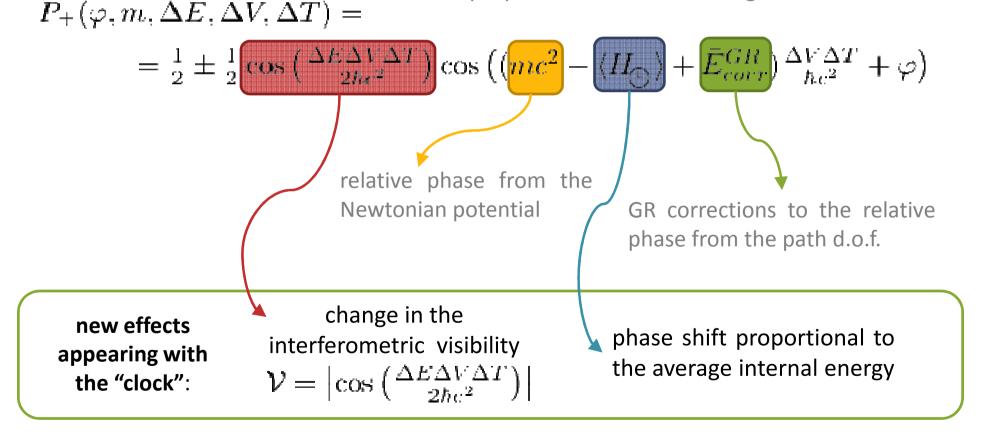
quantum complementarity + time dilation =


= drop in the interferometric visibility

Mach-Zehnder interferometer in a gravitational field

 $\gamma_{1,2}$: two possible paths through the setup, g : homogeneous gravitational field, Δh : separation between the paths

Quantum Complementarity



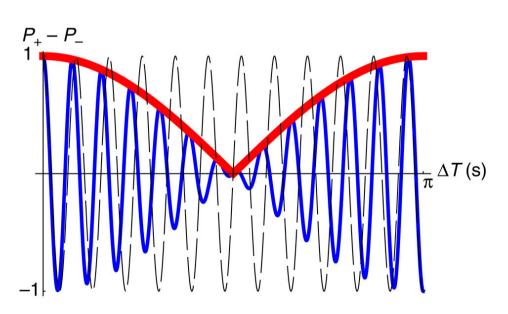
Results

$$\begin{split} H_{\bigodot} &= E_0 |0\rangle \langle 0| + E_1 |1\rangle \langle 1| \\ &\tau^{in} \rangle = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) \end{split}$$

 $\Delta E := E_1 - E_0$

- • $\Delta V:=g\Delta h$, gravitational potential
- ■∆h: distance between the paths
- ΔT: time for which the particle travels in superposition at constant heights

Results


$$\begin{split} H_{\bigodot} &= E_0 |0\rangle \langle 0| + E_1 |1\rangle \langle 1| \\ &\tau^{in} \rangle = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) \end{split}$$

 $P_{\pm}(\varphi, m, \Delta E, \Delta V, \Delta T) =$

 $\Delta E := E_1 - E_0$

- • $\Delta V:=g\Delta h$, gravitational potential
- ■∆h: distance between the paths
- ΔT: time for which the particle travels in superposition at constant heights

$$= \frac{1}{2} \pm \frac{1}{2} \cos\left(\frac{\Delta E \Delta V \Delta T}{2\hbar c^2}\right) \cos\left(\left(mc^2 - \left(\underline{H_{\odot}}\right) + \bar{E}_{corr}^{GR}\right)\frac{\Delta V \Delta T}{\hbar c^2} + \varphi\right)$$

- dashed, black line interference with the "clock" switched off
- blue line phase with the "clock" switched on
 - thick, red line modulation in the visibility

Phase shift vs Drop of visibility

$$\left|\Psi_{MZ}\right\rangle = \frac{1}{\sqrt{2}} \left(i|r_1\rangle |\tau_1\rangle e^{-i\phi_1} + |r_2\rangle |\tau_2\rangle e^{-i\phi_2} + i\varphi\right)$$

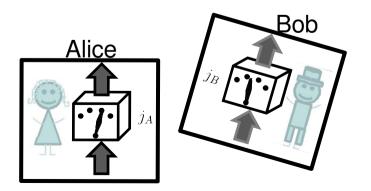
Phase Shift

Drop in Visibility

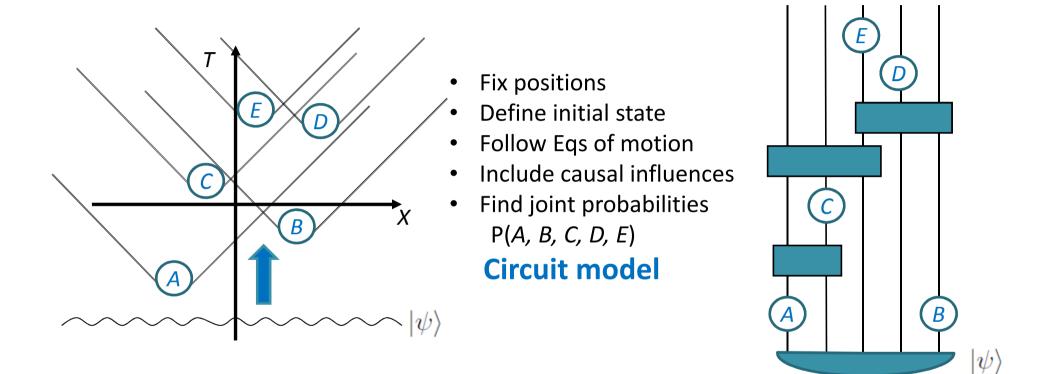
Explanable by:	Not explanaible without:		
 a potential force in absolute time 	gravity as metric theory,		
(possible non-Newtonian)	proper time τ flows at different		
 analogue to a charged particle in EM field 	rates – redshift		
 Flat space-time: no redshift 	curved space-time geometry		
 independent of whether a particle is a 	iff a particle is an operationally		
"clock" or a rock	well defined "clock"		

Colella, R., Overhauser, A. W. & Werner, S. A. *Phys. Rev. Lett.* 34, 1472–1474 (1975).

Müller, H., Peters, A. & Chu, S. *Nature* 463, 926–929 (2010).

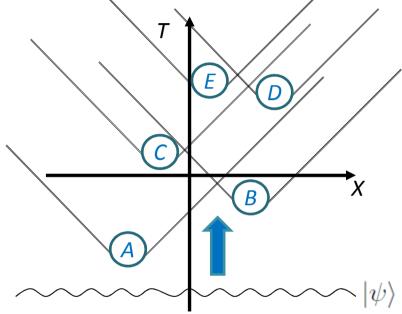

Experiment challenging (2-3 orders of magnitude)

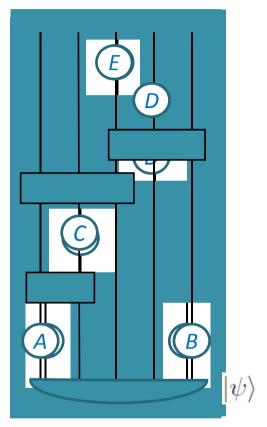
MZ3 such an interpretation was recently propsed in: H. Müller, A. Peters, & S. Chu, A precision measurement of the gravitational redshift by the interference of matter waves. Nature 463, 926–929 (2010).


Magdalena Zych; 23.1.2012

[2] Quantum correlations with no causal order

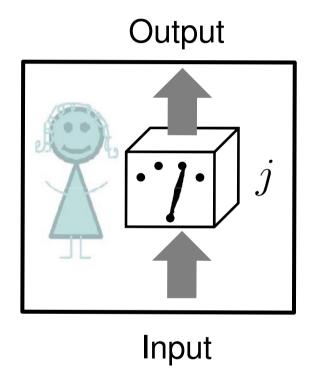
O. Oreshkov, F. Costa, Č. Brukner: arXiv:1105.4464


Measurements in space-time


Space-time & definite causal structure are pre-existing entities.

What happens if one removes global time and causal structure from quantum mechanics? What new phenomenology is implied?

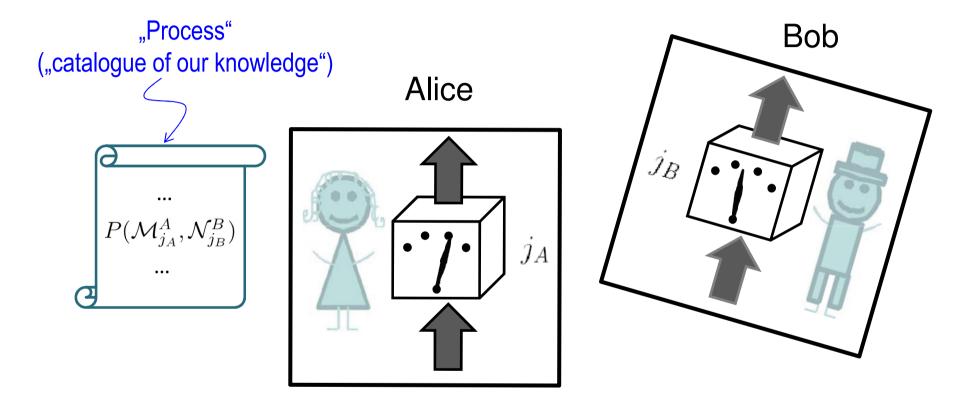
Measurements in space-time



- Fix positions
- Define initial state
- Follow Eqs of motion
- Include causal influences
- Find joint probabilities P(A, B, C, D, E)
 Circuit model

New computational model? New phenomenology?

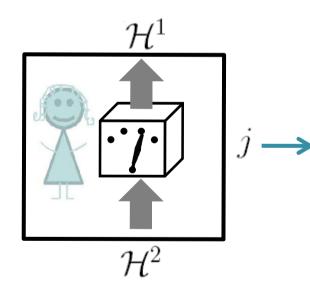
Operational approach


The system exits the lab.

One out of a set of possible transformations (CP-maps) is performed.

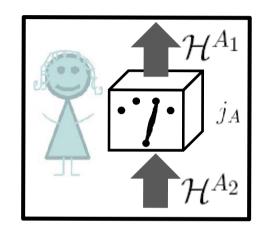
A system enters the lab.

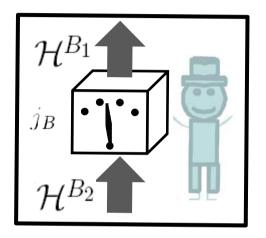
This is the **only** way how the labs interact with the "outside world".


Operational approach

No prior assumption of pre-existing causal structure, in particular of the pre-existing background time.

Main premise:


Local quantum mechanics: The local operations of each party are described by quantum mechanics.



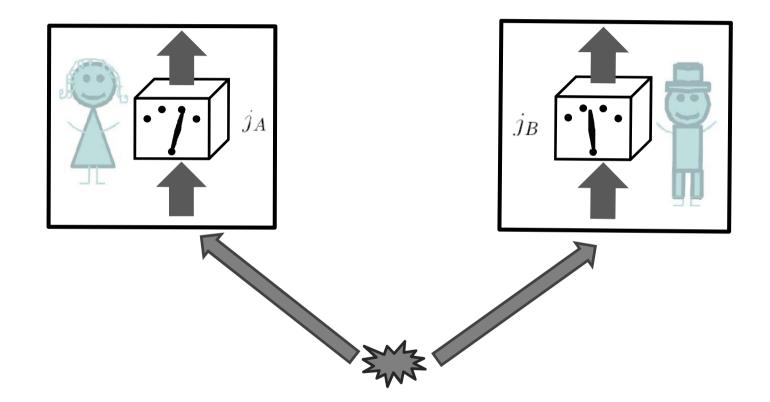
Transformations = completely positive (CP) trace non increasing maps

$$\mathcal{M}_j : \mathcal{L}(\mathcal{H}^2) \to \mathcal{L}(\mathcal{H}^1)$$

Two parties

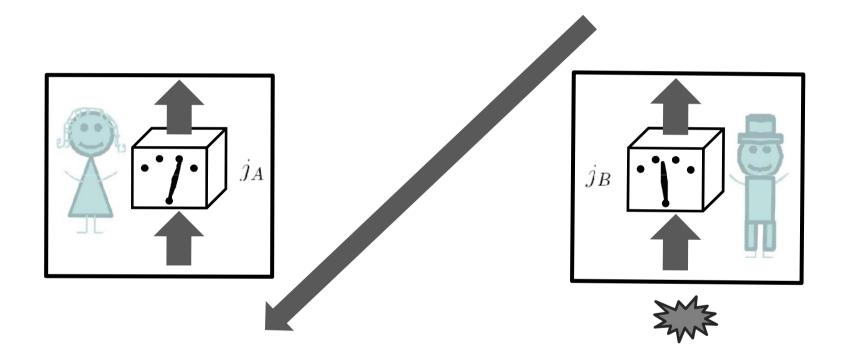
$$\mathcal{M}_{j_A}^A : \mathcal{L}(\mathcal{H}^{A_2}) \to \mathcal{L}(\mathcal{H}^{A_1})$$

$$\mathcal{M}^B_{j_B}: \mathcal{L}(\mathcal{H}^{B_2}) \to \mathcal{L}(\mathcal{H}^{B_1})$$

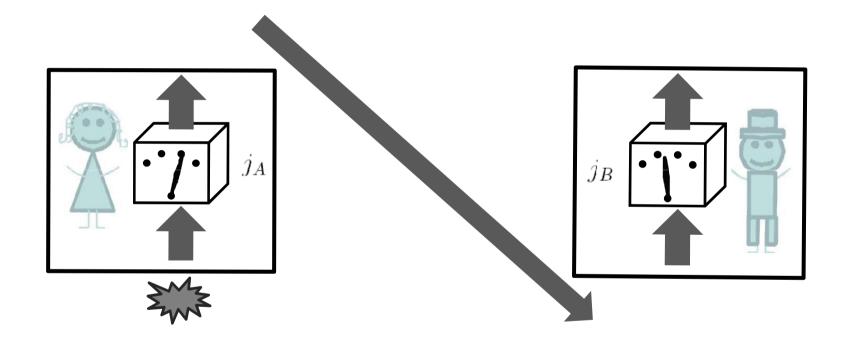

CP maps

Probabilities are bilinear functions of the CP maps Choi-Jamilkowski representation of the CP maps: $P(\mathcal{M}^{A}, \mathcal{M}^{B}) = \operatorname{Tr} \left[W^{A_{1}A_{2}B_{1}B_{2}} \left(\rho_{\mathcal{M}^{A}}^{A_{1}A_{2}} \otimes \rho_{\mathcal{M}^{B}}^{B_{1}B_{2}} \right) \right]$

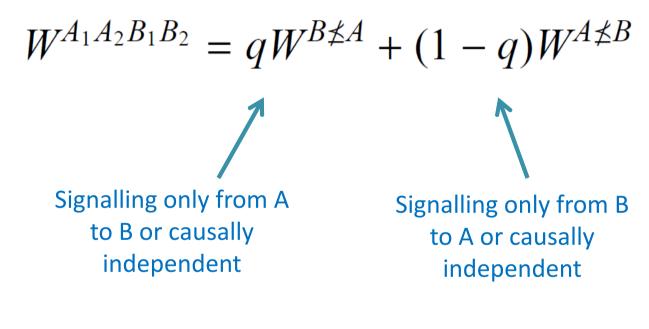
"Process Matrix"


Chiribella et al, Phys. Rev. A. 81, 062348 (2010)

Bipartite state


Sharing a joint state; No signalling

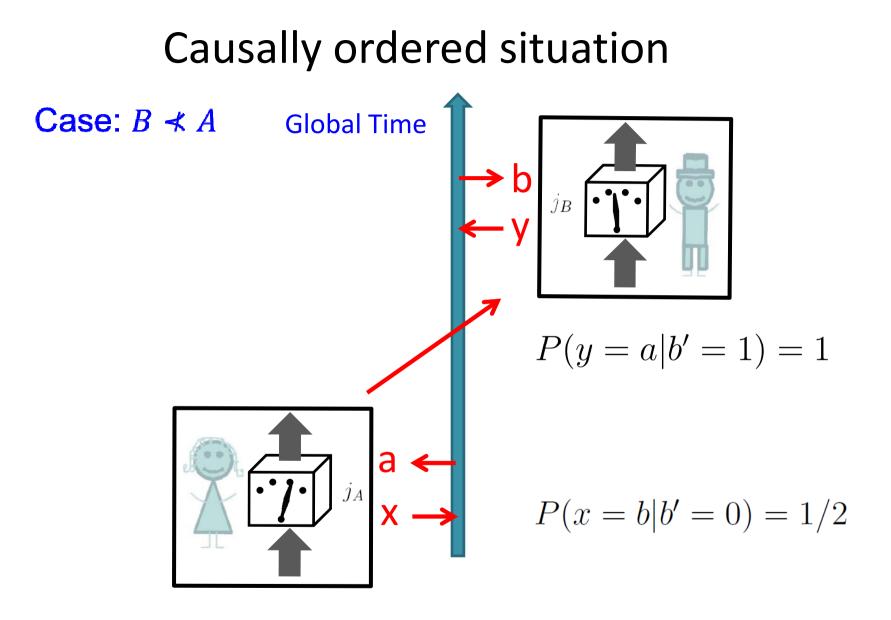
Channel $B \rightarrow A$



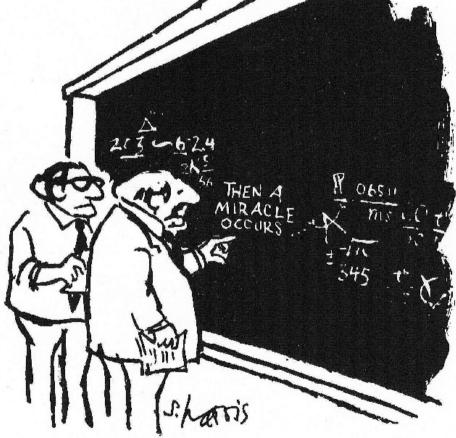
Sending a state from B to A; Possibility of signalling

Channel $A \rightarrow B$

Sending a state from A to B; Possibility of signalling Mixtures of different orders also possible Most general causally separable situation: probabilistic mixture of ordered ones:


Do all possible processes W respect definite causal order?

Causal Game Guess x is produced in local time before bit a is given $in i j_A$ $in j_A$ in


- Alice is given bit **a** and Bob bit **b**.
- Alice produces **x** and Bob **y**, which are their best guesses for the value of the bit given to the other.
- Bob is given an additional bit b' that tells him whether he should guess her bit (b'=1) or she should guess his bit (b'=0).
- The goal is to maximize the probability for correct guess:

$$p_{succ} := \frac{1}{2} \left[P(x = b | b' = 0) + P(y = a | b' = 1) \right]$$

 $p_{succ} = P(x = b|b' = 0) + P(y = a|b' = 1) \le \frac{3}{4}$

Causally non-separable situation $W^{A_1A_2B_1B_2} = \frac{1}{4} \left[\mathbb{1} + \frac{1}{\sqrt{2}} \left(\sigma_z^{A_1} \sigma_z^{B_2} + \sigma_z^{A_2} \sigma_z^{B_1} \sigma_x^{B_2} \right) \right]$

"I think you should be more explicit here in step two."

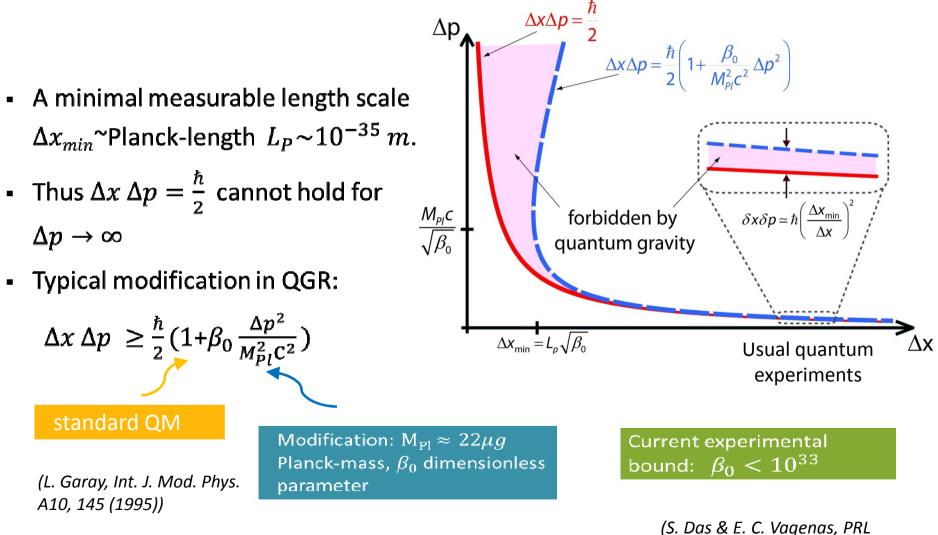
The probability of success is

$$p_{succ} = \frac{2+\sqrt{2}}{5} > \frac{3}{4}$$

"Tsirlason bound for noncausal correlations" ??

This process cannot be realized as a probabilistic mixture of causally ordered situations!

[2] Probing Planck physics with quantum optics



I. Pikovski, M. R. Vanner, M. Aspelmeyer, M. S. Kim and Č. Brukner: Nature Physics (2012) doi:10.1038/nphys2262

Experimental quantum gravity?

Effects largely believed to be relevant at the **Planck-scale**:

Modified uncertainty relation

101, 221301 (2008))

Possible commutator modifications

$$\Delta x \, \Delta p \geq \frac{\hbar}{2} (1 + \beta \Delta p^2)$$

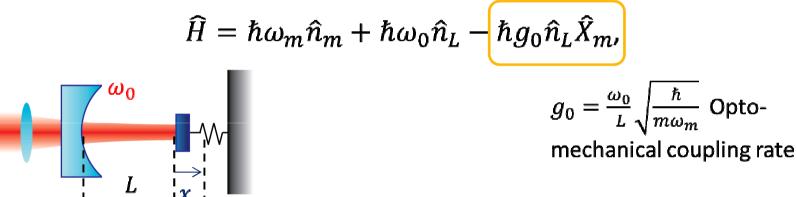
implies a modified commutator. E.g.:

•
$$\left[\hat{X}, \hat{P}\right]_{\beta} = i(1+\beta_0 \frac{\hat{P}^2}{M_{Pl}^2 c^2})$$

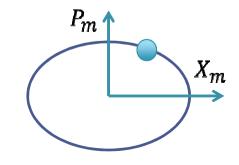
(A. Kempf, G. Mangano and R. Mann, PRD, 52, 2 (1995))

•
$$[\hat{X}, \hat{P}]_{\mu} = i \sqrt{1 + 2\mu_0 \frac{(\hat{P}/c)^2 + m^2}{M_{Pl}^2}}$$

(M. Maggiore, Phys. Lett. B, 319 (1993))


• $[\hat{X}, \hat{P}]_{\gamma} = i(1-\gamma_0 \frac{\hat{P}}{M_{Pl}c} + \gamma_0^2 \frac{\hat{P}^2}{M_{Pl}^2 c^2}) \frac{(A. F. Ali, S. Das and E. C. Vagenas, Phys. Lett. B, 678 (2009)$

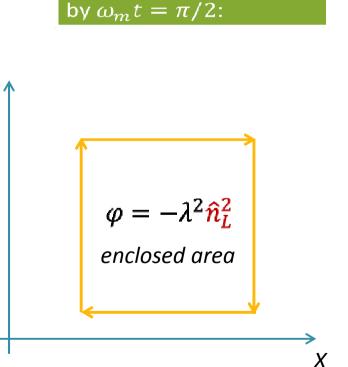
Note: ground-state $p_0 = \sqrt{m\omega\hbar}$, mass-dependent


Opto-mechanics

Control of a massive systems with light

Opto-mechanical interaction:

- Pulsed interactions (duration $au \ll \omega_m$): (Vanner, et al., PNAS 108, 16182 (2011))
 - $\widehat{H} \approx -\hbar g_0 \widehat{n}_L \widehat{X}_m$
- Harmonic evolution: $\hat{X}_m(t) = \hat{X}_m \cos(\omega_m t) \hat{P}_m \sin(\omega_m t)$



Loop in a phase space

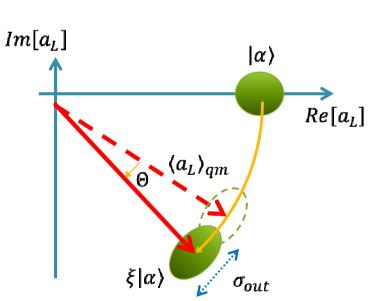
Displacements of a quantum system around a loop in phase space via an ancillary (light) system:

$$\hat{\xi} = e^{i\lambda\hat{n}_L\hat{P}} e^{-i\lambda\hat{n}_L\hat{X}} e^{-i\lambda\hat{n}_L\hat{P}} e^{i\lambda\hat{n}_L\hat{X}}$$
$$= e^{-i\lambda^2\hat{n}_L^2}$$

- Resulting phase changes the ancilla, but is state-independent
- Mechanics remains unaffected, and is fully disentangled from the ancilla

Four pulses separated

Phase due to QG


$$\hat{\xi} = e^{i\lambda\hat{n}_L\hat{P}} e^{-i\lambda\hat{n}_L\hat{X}} e^{-i\lambda\hat{n}_L\hat{P}} e^{i\lambda\hat{n}_L\hat{X}} = e^{\sum_{k=1}^{\infty} \frac{(-i\lambda\hat{n}_L)^{\kappa+1}}{k!} [\hat{X},\hat{P}]_k}$$

• QM:
$$[\hat{X}, \hat{P}] = i \implies \hat{\xi}_{QM} = e^{-i\lambda^2 \hat{n}_L^2}$$

• QG:
$$[\hat{X}, \hat{P}] = i F(\hat{X}, \hat{P})$$

Any arbitrary deformed algebra will show in $\hat{\xi}$!

By measuring the ancilla (initially in $|\alpha\rangle$) one can obtain a measure of the commutator.

where $[\hat{X}, \hat{P}]_k \equiv [\hat{X}, [\hat{X}, ..., \hat{P}]]$

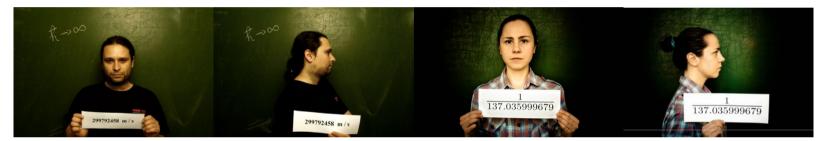
$$\langle \hat{a}_L \rangle = \left\langle \alpha \left| \hat{\xi}^+ \hat{a}_L \hat{\xi} \right| \alpha \right\rangle \cong \langle \hat{a}_L \rangle_{QM} e^{-i \Theta([\hat{X}, \hat{P}]_{mod})}$$

Example:
$$\Theta(\beta) \simeq \frac{4}{3} \beta N_p^3 \lambda^4 e^{-i6\lambda^2}$$

Table 2 | Experimental parameters to measure quantumgravitational deformations of the canonical commutator.

	[X _m ,P _m] Θ	Equation (2) $\mu_0 \frac{32\hbar \mathcal{F}^2 m N_p}{M_p^2 \lambda_L^2 \omega_m}$	Equation (3) $\gamma_0 \frac{96\hbar^2 \mathcal{F}^3 N_p^2}{M_P c \lambda_L^3 m \omega_m}$	Equation (1) $\beta_0 \frac{1024\hbar^3 \mathcal{F}^4 N_p^3}{3M_p^2 c^2 \lambda_L^4 m \omega_m}$
Finess	${\cal F}$	10 ⁵	2×10^{5}	4×10^{5}
Mass	т	10 ⁻¹¹ kg	10 ⁻⁹ kg	10 ⁻⁷ kg
Mech. Frequency	$\omega_{\rm m}/2\pi$	10 ⁵ Hz	10 ⁵ Hz	10 ⁵ Hz
Optical wavelength	λ_{L}	1,064 nm	1,064 nm	532 nm
Photon number	Np	10 ⁸	5×10^{10}	10 ¹⁴
Measurement runs	Nr	1	10 ⁵	10 ⁶
Measur. precision	$\delta \langle \Phi \rangle$	10-4	10 ⁻⁸	10 ⁻¹⁰

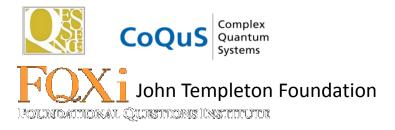
The parameters are chosen such that a precision of $\delta \mu_0 \sim 1$, $\delta \gamma_0 \sim 1$ and $\delta \beta_0 \sim 1$ can be achieved, which amounts to measuring Planck-scale deformations.


Quantum Information Meets Gravity Summary

- 1. New paradigm for tests of genuine general relativistic effects in quantum mechanics:
 - Drop in the visibility of quantum interference due to gravitational time dilation
- 2. Quantum formalism for indefinite causal structures
 - Quantum correlations with no-causal order
- 3. Possibility to probe phenomenological predictions of quantum gravity in massive quantum systems:
 - Measurement of the deformation of commutation relation of the center-of-mass modes

Borivoje Dakic

Igor Pikovski



Fabio Costa

Magdalena Zych

Ognyan Oreshkov (U. Brüssels)

Thank you for your attention

C.B.

quantumfoundations.weebly.com