Impact of statistics of entangled photon sources on quantum key distribution: parametric generators and quantum dots

R. Hošák¹, I. Straka¹, A. Predojević², R. Filip¹, M. Ježek¹

Abstract: The effect of photon-pair generation rate on quantum entanglement is analyzed. Two techniques of producing polarization entanglement are compared in terms of quantum key distribution performance: spontaneous parametric down-conversion and a self-assembled quantum dot. We find that the secure key rate of down-converted photon pairs is limited by multiphoton contributions that are fundamentally unavoidable. The secure key rate of quantum dots is limited only technically by photon collection efficiency.

Related Publications: R. Hošák et al., (2020, in preparation)

Photonics Online Meetup

¹ Department of Optics, Palacký University, 17. listopadu 12, 77146 Olomouc, Czech Republic ² AlbaNova University Center, Stockholm University, Department of Physics, SE – 106 91, Stockholm, Sweden

Evaluating the performance of entanglement sources in quantum protocols

Motivated by application: Device independent QKD protocols relies on entanglement as a security guarantee.

Analysis and comparison: SPDC (left) and quantum dots (right) both produce entangled states. However, they differ in photon number *statistics.*

How viable are these entanglement sources in applications? How to compare them across multiple different implementations with different statistics?

We choose to study the effect of statistics on performance in a QKD protocol. We focus especially on the secure key rate lower bound (r_{DW})

Photonics Online Meetup

Parametric down conversion based sources

60%

Starting point: A low-gain SPDC process produces states close to a perfect Bell state. Higher-gain SPDC yields better r_{c1} at the cost of deteriorated entanglement.

Emulation of higher-gain SPDC is possible by lengthening the coincidence window to allow photons from *independent* low-gain SPDC processes to be registered as a coincidence.

This allows us to study the effect of multi-pair statistics in high-gain SPDC states on performance in the QKD protocol

From coincidences to characterization: We

calculate/measure coincidence counts for tomographic projections. From there we reconstruct an effective multiphoton entangled quantum state, and we calculate the secure key rate lower bound (r_{DW}) along with the absolute key rate (in bits per pulse, or bits per coincidence window – depending on pump regime).

Coincidence rate (r_c**):** The probability of registering a coincidence during a coincidence window. Alternatively the probability of coincidence per excitation pulse.

The multi-photon nature of SPDC states results in **progressively deteriorating performance** in the QKD protocol. Shown for different amounts of overall loss in the system.

Comparison of SPDC and quantum dots

Resonantly excited quantum dots can produce strictly onepair entangled states. Thus increase in the coincidence rate r_c leads to no deterioration of the secure key rate r_{DW} .

Orange points: experimental data (CW SPDC source, increasing coincidence window length to emulate high-gain multi-photon SPDC states). Blue dashed line: CW SPDC model with 84 % loss (to match 16 % coupling efficiency of our setup). Green line: CW SPDC model, no loss. The ultimate bound on key rate for SPDC in this protocol. Red dotted line: Quantum dot prediction, no loss. Black lines: Predictions for quantum dot key rate scaling with improvements in r_c.

Principal factor governing ${\bf r}_{\rm c}$ of quantum dots:

Signal collection efficiency.

Radim Hošák @baxthepigeon, Miroslav Ježek @QuantumHedgehog Quantum Optics Lab Olomouc (QOLO) @OpticsOlomouc

Paper in preparation!

Photonics Online Meetup